322311(14)

B. E. (Third Semester) Examination, 2020

(Old Scheme)

(CSE, IT Engg. Branch)

MATHEMATICS-III

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Part (a) of each unit is compulsory. All questions are required to be answered, selecting any two from (b), (c) and (d). Area under the normal curve table is allowed

Unit-I

- 1. (a) Define periodic function with an example.
 - (b) Find the fourier series for the function f(x), if $f(x) = x \cos x \text{ in } -\pi < x < \pi.$

322311(14)

(c) Obtain a half range cosine series for

$$f(x) = \begin{cases} kx, & 0 \le x \le l/2 \\ k(l-x), & l/2 \le x \le l \end{cases}$$

(d) Find out the constant term and the co-efficient of the first sine and cosine terms in the fourier series of y as given in the following table:

x	0	1	2	3	4	5
y	9	18	124	28	26	20

- (a) Define unit step function and write their laplace transform.
 - (b) (i) Find the laplace transform of

$$e^{at} - \cos bt$$

2

(ii) Evaluate:

$$\int_0^\infty e^{-2t} \cdot t \cos t \, dt$$
Here we note that the constant engines, satisfy (ii)

(c) Prove that:
$$L^{-1} \left\{ \frac{s}{s^4 + s^2 + 1} \right\} = \frac{2}{\sqrt{3}} \sinh \sin \frac{\sqrt{3}}{2} t$$

322311(14)

(d) Using the method of Laplace transform, solve:

$$(D^3 - 3D^2 + 3D - 1)y = t^2 e^t$$

given that
$$y(0) = 1$$
, $y'(0) = 0$, $y''(0) = -2$.

Unit-III

3. (a) State Cauchy's residue theorem.

Cauchy-Riemann equations are

(b) If f(z) = u + ir is an analytic function and $z = re^{i\theta}$, where u, v, r, θ are all real, then show that the

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial V}{\partial \theta}, \quad \frac{\partial V}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$$

Also deduce that

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$$

(c) Evaluate

autos usaidai
$$\int_C \frac{z_{i,0}^2 - z + 1}{z - 1} dz$$
 sho bortism ant grant t (b)

where C is the circle :

(d) Apply calculus of residues to prove that:

7

 $\int_0^{2\pi} \frac{\cos 2\theta}{5 + 4\cos \theta} \ d\theta = \frac{\pi}{6}$

Unit-IV

4. (a) Obtain the partial differential equation by eliminating the arbitrary function f from

$$z = f\left(\frac{y}{x}\right)$$
 and those manner $x = f\left(\frac{y}{x}\right)$

(b) Solve:

$$x^{2}(y-z)p+y^{2}(z-x)q=z^{2}(x-y)$$

(c) Solve: 7

$$\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} = \cos 2x \cdot \cos 3y$$

(d) Using the method of separation of variables, solve:

$$\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u \text{ given and we have$$

given that $u(x, 0) = 6e^{-3x}$.

[5]

Unit-V

- 5. (a) If a random variable has a Poisson distribution such that P(1) = P(2), then find mean of the distribution. 2
 - (b) The probability density f(x) of a continuous random variable is given by

$$f(x) = y_0 x(2-x), \quad 0 \le x \le 2$$

Find the value of y_0 , mean and variance of x.

- (c) The probability that a pen manufactured by a company will be defective is 1/10. If 12 such pens are manufactured, find the probability that:
 - (i) exactly two will be defective,
 - (ii) at least two will be defective and
 - (iii) none will be defective

7

7

- (d) If X is a normal variate with mean 30 and standard deviation 5, then find the probabilities that:
 - (i) $26 \le X \le 40$,
 - (ii) $X \ge 45$ and
 - (iii) |X 30| > 5

80]

322311(14)